Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Clin Oral Investig ; 28(5): 254, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630328

RESUMO

OBJECTIVE: Dentinogenesis imperfecta (DI) is an inherited dentin defect and may be isolated or associated with disorders such as osteogenesis imperfecta, odontochondrodysplasia Ehler-Danlos and others. Isolated DI is caused mainly by pathogenic variants in DSPP gene and around 50 different variants have been described in this gene. Herein, we report on 19 patients from two unrelated Egyptian families with isolated DI. Additionally, we focused on genetic counselling of the two families. MATERIALS AND METHODS: The patients were examined clinically and dentally. Panoramic X-rays were done to some patients. Whole exome sequencing (WES) and Sanger sequencing were used. RESULTS: WES revealed two new nonsense variants in DSPP gene, c.288T > A (p.Tyr96Ter) and c.255G > A (p.Trp85Ter). Segregation analysis by Sanger sequencing confirmed the presence of the first variant in all affected members of Family 1 while the second variant was confirmed to be de novo in the patient of Family 2. CONCLUSIONS AND CLINICAL RELEVANCE: Our study extends the number of DSPP pathogenic variants and strengthens the fact that DSPP is the most common DI causative gene irrespective of patients' ethnicity. In addition, we provide insights on genetic counseling issues in patients with inherited DSPP variants taking into consideration the variable religion, culture and laws in our society.


Assuntos
Dentinogênese Imperfeita , Osteocondrodisplasias , Humanos , Dentinogênese Imperfeita/genética , Aconselhamento Genético , Etnicidade , Radiografia Panorâmica
3.
J Hum Genet ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459224

RESUMO

Biallelic pathogenic variants in MADD lead to a very rare neurodevelopmental disorder which is phenotypically pleiotropic grossly ranging from severe neonatal hypotonia, failure to thrive, multiple organ dysfunction, and early lethality to a similar but milder phenotype with better survival. Here, we report 5 patients from 3 unrelated Egyptian families in whom 4 patients showed the severe end of the spectrum displaying neonatal respiratory distress, hypotonia and chronic diarrhea while one patient presented with the mild form displaying moderate intellectual disability and myopathy. In addition, we observed distal arthrogryposis and nonspecific structural brain anomalies in all our patients. Interestingly, cerebellar and brainstem hypoplasia were noted in one patient. Whole exome sequencing identified three novel homozygous variants in the MADD gene: two likely pathogenic [c.4321delC p.(Gln1441ArgfsTer46) and c.2620 C > T p.(Arg874Ter)] and one variant of uncertain significance (c.4307 G > A, p.Arg1436Gln). The variants segregated with the disease in all available family members. Our findings confirm that arthrogryposis, genital, cardiac and structural brain anomalies are manifestations of MADD which expand the spectrum of MADD-related neurodevelopmental disorder. Moreover, they further highlight the convergence of MADD variants on different organ systems leading to complex phenotypes.

4.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405817

RESUMO

FLVCR1 encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While Flvcr1 knockout mice die in utero with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic FLVCR1 variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system. We ascertained from research and clinical exome sequencing 27 individuals from 20 unrelated families with biallelic ultra-rare missense and predicted loss-of-function (pLoF) FLVCR1 variant alleles. We characterize an expansive FLVCR1 phenotypic spectrum ranging from adult-onset retinitis pigmentosa to severe developmental disorders with microcephaly, reduced brain volume, epilepsy, spasticity, and premature death. The most severely affected individuals, including three individuals with homozygous pLoF variants, share traits with Flvcr1 knockout mice and Diamond-Blackfan anemia including macrocytic anemia and congenital skeletal malformations. Pathogenic FLVCR1 missense variants primarily lie within transmembrane domains and reduce choline and ethanolamine transport activity compared with wild-type FLVCR1 with minimal impact on FLVCR1 stability or subcellular localization. Several variants disrupt splicing in a mini-gene assay which may contribute to genotype-phenotype correlations. Taken together, these data support an allele-specific gene dosage model in which phenotypic severity reflects residual FLVCR1 activity. This study expands our understanding of Mendelian disorders of choline and ethanolamine transport and demonstrates the importance of choline and ethanolamine in neurodevelopment and neuronal homeostasis.

5.
Clin Genet ; 105(5): 510-522, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38221827

RESUMO

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of epilepsies characterized by early-onset, refractory seizures associated with developmental regression or impairment, with a heterogeneous genetic landscape including genes implicated in various pathways and mechanisms. We retrospectively studied the clinical and genetic data of patients with genetic DEE who presented at two tertiary centers in Egypt over a 10-year period. Exome sequencing was used for genetic testing. We report 74 patients from 63 unrelated Egyptian families, with a high rate of consanguinity (58%). The most common seizure type was generalized tonic-clonic (58%) and multiple seizure types were common (55%). The most common epilepsy syndrome was early infantile DEE (50%). All patients showed variable degrees of developmental impairment. Microcephaly, hypotonia, ophthalmological involvement and neuroimaging abnormalities were common. Eighteen novel variants were identified and the phenotypes of five DEE genes were expanded with novel phenotype-genotype associations. Obtaining a genetic diagnosis had implications on epilepsy management in 17 patients with variants in 12 genes. In this study, we expand the phenotype and genotype spectrum of DEE in a large single ethnic cohort of patients. Reaching a genetic diagnosis guided precision management of epilepsy in a significant proportion of patients.


Assuntos
Epilepsia Generalizada , Epilepsia , Criança , Humanos , Egito/epidemiologia , Estudos Retrospectivos , Epilepsia/diagnóstico , Convulsões/genética , Convulsões/complicações , Fenótipo
6.
medRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260255

RESUMO

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

7.
Brain ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217872

RESUMO

Loss-of-function mutation of ABCC9, the gene encoding the SUR2 subunit of ATP sensitive-potassium (KATP) channels, was recently associated with autosomal recessive ABCC9-related intellectual disability and myopathy syndrome (AIMS). Here we identify nine additional subjects, from seven unrelated families, harboring different homozygous LoF variants in ABCC9 and presenting with a conserved range of clinical features. All variants are predicted to result in severe truncations or in-frame deletions within SUR2, leading to the generation of non-functional SUR2-dependent KATP channels. Affected individuals show psychomotor delay and intellectual disability of variable severity, microcephaly, corpus callosum and white matter abnormalities, seizures, spasticity, short stature, muscle fatigability, and weakness. Heterozygous parents do not show any conserved clinical pathology but report multiple incidences of intrauterine fetal death, which were also observed in an eighth family included in this study. In vivo studies of abcc9 LoF in zebrafish revealed an exacerbated motor response to pentylenetetrazole, a pro-convulsive drug, consistent with impaired neurodevelopment associated with an increased seizure susceptibility. Our findings define an ABCC9 LoF related phenotype, expanding the genotypic and phenotypic spectrum of AIMS and reveal novel human pathologies arising from KATP channel dysfunction.

8.
Am J Med Genet A ; 194(1): 39-45, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750049

RESUMO

Abnormal hyperpolarization of the KCNK4 gene, expressed in the nervous system, brain, and periodontal ligament fibroblasts, leads to impaired neurotransmitter sensitivity, cardiac arrhythmias, and endocrine dysfunction, as well as, progressive cell proliferation. De novo gain of function variants in the KCNK4 gene were reported to cause a recognizable syndrome characterized by facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental delay, and gingival overgrowth (FHEIG, OMIM# 618381). FHEIG is extremely rare with only three reported cases in the literature. Herein, we describe the first inherited KCNK4 variant (c.730G>C, p.Ala244Pro) in an Egyptian boy and his mother. Variable phenotypic expressivity was noted as the patient presented with the full-blown picture of the syndrome while the mother presented only with hypertrichosis and gingival overgrowth without any neurological manifestations. The c.730G>C (p.Ala244Pro) variant was described before in a single patient and when comparing the phenotype with our patient, a phenotype-genotype correlation seems likely. Atrial fibrillation and joint laxity are new associated findings noted in our patient extending the clinical phenotype of the syndrome. Dental management was offered to the affected boy and a dramatic improvement was noted as the patient regained his smile, restored the mastication function, and resumed his psychological stability.


Assuntos
Fibromatose Gengival , Crescimento Excessivo da Gengiva , Hipertricose , Deficiência Intelectual , Masculino , Humanos , Fibromatose Gengival/diagnóstico , Fibromatose Gengival/genética , Hipertricose/genética , Linhagem , Crescimento Excessivo da Gengiva/complicações , Fenótipo , Síndrome , Assistência Odontológica/efeitos adversos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Canais de Potássio/genética
9.
Am J Med Genet A ; 194(2): 226-232, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798908

RESUMO

Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) and PEHO-like syndromes are very rare infantile disorders characterized by profound intellectual disability, hypotonia, convulsions, optic, and progressive brain atrophy. Many causative genes for PEHO and PEHO-like syndromes have been identified including CCDC88A. So far, only five patients from two unrelated families with biallelic CCDC88A variants have been reported in the literature. Herein, we describe a new family from Egypt with a lethal epileptic encephalopathy. Our patient was the youngest child born to a highly consanguineous couple and had a family history of five deceased sibs with the same condition. She presented with postnatal microcephaly, poor visual responsiveness, and epilepsy. Her brain MRI showed abnormal cortical gyration with failure of opercularization of the insula, hypogenesis of corpus callosum, colpocephaly, reduced white matter, hypoplastic vermis, and brain stem. Whole exome sequencing identified a new homozygous frameshift variant in CCDC88A gene (c.1795_1798delACAA, p.Thr599ValfsTer4). Our study presents the third reported family with this extremely rare disorder. We also reviewed all described cases to better refine the phenotypic spectrum associated with biallelic loss of function variants in the CCDC88A gene.


Assuntos
Edema Encefálico , Doenças Neurodegenerativas , Atrofia Óptica , Espasmos Infantis , Humanos , Criança , Feminino , Espasmos Infantis/genética , Edema Encefálico/genética , Atrofia Óptica/genética , Síndrome , Proteínas dos Microfilamentos/genética , Proteínas de Transporte Vesicular/genética
10.
J Hum Genet ; 69(2): 79-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38017281

RESUMO

Pontocerebellar hypoplasia (PCH) is a rare heterogeneous neurodegenerative disorder affecting the pons and cerebellum and is currently classified into 17 types (PCH1-PCH17). PCH1 is distinguishable from other types by the association of spinal motor neuron dysfunction. Based on the underlying genetic etiology, PCH1 is further classified into 6 different subtypes (PCH1 A-F). Of them, PCH type 1C is caused by pathogenic variants in EXOSC8 gene and so far, only four families have been described in the literature. In this study, we report a new patient with PCH1 who proved by whole-exome sequencing to harbor a novel homozygous missense variant in the splice region of EXOSC8 gene (c.238 G > A; p.Val80Ile). Studying mRNA of the patient confirmed that this variant results in skipping of exon 5 of the gene and early protein truncation. Our patient presented with the main clinical findings of PCH type 1C including psychomotor retardation, spasticity, spinal muscle atrophy, and respiratory problems. However, unlike most of the reported cases, he did not develop hearing or visual impairment and displayed a longer survival. In addition, our patient had dysmorphic facies, nystagmus, congenital esotropia and contractures which were infrequently described in patients with EXOSC8. Diaphragmatic hernia, dilated lateral ventricles, hypoplastic temporal lobes, and thinning of the brain stem were additional new findings noted in our patient. This study presents the fifth family with this extremely rare type of PCH and expands the associated clinical and brain imaging findings.


Assuntos
Doenças Cerebelares , Masculino , Humanos , Mutação , Doenças Cerebelares/diagnóstico por imagem , Doenças Cerebelares/genética , Doenças Cerebelares/patologia , Cerebelo/patologia , Éxons/genética , Proteínas de Ligação a RNA/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética
11.
Clin Genet ; 105(1): 92-98, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671596

RESUMO

Pathogenic variants in PNPLA8 have been described either with congenital onset displaying congenital microcephaly, early onset epileptic encephalopathy and early lethality or childhood neurodegeneration with progressive microcephaly. Moreover, a phenotype comprising adulthood onset cerebellar ataxia and peripheral neuropathy was also reported. To our knowledge, only six patients with biallelic variants in PNPLA8 have been reported so far. Here, we report the clinical and molecular characterizations of three additional patients in whom exome sequencing identified a loss of function variant (c.1231C>T, p.Arg411Ter) in Family I and a missense variant (c.1559T>A, p.Val520Asp) in Family II in PNPLA8. Patient 1 presented with the congenital form of the disease while Patients 2 and 3 showed progressive microcephaly, infantile onset seizures, progressive cortical atrophy, white matter loss, bilateral degeneration of basal ganglia, and cystic encephalomalacia. Therefore, our results add the infantile onset as a new distinct phenotype of the disease and suggest that the site of the variant rather than its type is strongly correlated with the disease onset. In addition, these conditions demonstrate some overlapping features representing a spectrum with clinical features always aligning with different age of onset.


Assuntos
Ataxia Cerebelar , Microcefalia , Humanos , Adulto , Criança , Microcefalia/genética , Fenótipo , Ataxia Cerebelar/genética , Mutação de Sentido Incorreto , Gânglios da Base
12.
Am J Hum Genet ; 111(1): 200-210, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38118446

RESUMO

The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra-rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2)-related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi-quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss-of-function (LoF) impact of the disease-associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTP-binding proteins in CNS development across species.


Assuntos
Proteínas de Ligação ao GTP , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila melanogaster/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas de Drosophila/genética
13.
Arch Oral Biol ; 158: 105869, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104461

RESUMO

OBJECTIVES: describing the clinical features of twelve Egyptian patients with Papillon-Lefever syndrome (PLS). Five novel mutations in the cathepsin C (CTSC) gene are introduced and the phenotype of the syndrome is expanded by the identification of new clinical features. DESIGN: the clinical, oro-dental data of twelve Egyptian patients from seven unrelated families are described. Sequence analysis of the CTSC gene was performed to identify the causative mutaions. RESULTS: Typical PLS features were presented in all patints but with variable severity. One patient showed atypical dental features including dental structural defect, minimal periodontitis, severe gingivitis, and delayed closure of root apices. Another patient presented with arachnodactyly, dystrophic nails, and buphthalmos in the right eye secondary to uncontrolled congenital glaucoma. Mutational analysis of CTSC gene revealed seven distinct homozygous variants including five novel ones: c.285_286delGT (p.Leu96GlufsTer2), c .302 G>C (p.Trp101Ser), c.622_628delCACAGTC (p.H208Efs*11), c.1331delinsAAAAA (p.G444Efs*4) and c .1343 G>A (p.Cys448Tyr). The previously reported missense variant c .757 G>A (p.Ala253Thr) was found in one patient. This variant is very close to the splice region and by functional studies, we proved that it results in exon skipping and early protein truncation (p.R214Sfs*46). CONCLUSION: We report five novel CTSC variants and describe rare and unusual associated clinical and dental findings such as dental structural defects, delayed closure of root apices, and congenital glaucoma. Therefore, our results expand both the phenotypic and mutational spectrum of PLS.


Assuntos
Glaucoma , Doença de Papillon-Lefevre , Humanos , Doença de Papillon-Lefevre/genética , Catepsina C/química , Catepsina C/genética , Egito , Mutação de Sentido Incorreto , Síndrome
14.
Mol Syndromol ; 14(6): 523-529, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058759

RESUMO

Introduction: We report on a 4-year-old female patient who presented with severe intellectual disability, autistic features, hyperlaxity of joints, and progressive scoliosis. Whole-exome sequencing identified a de novo missense variant (c.976C>T; p.Arg326Cys) in DDX3X. Case Presentation: The girl was born with congenital diaphragmatic hernia a finding which had not previously been associated with variants in DDX3X. Her brain MRI showed hypogenesis of corpus callosum, ventriculomegaly, frontal and perisylvian polymicrogyria, and hypoplastic pons in addition to Dandy-Walker malformation. Conclusion: Our results confirmed the phenotype and genotype correlation of missense variants and the polymicrogyria. Moreover, it further expands the knowledge of the phenotypic and molecular features of DDX3X-related intellectual disability.

15.
Sci Rep ; 13(1): 21888, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081872

RESUMO

Recently, significant attention has been directed towards digital image colorimetry DIC using mobile applications or available software programs, which offer the advantage of analyzing samples without the need for sophisticated instruments. One such image processing program is Image J, widely used for obtaining quantitative information from scientific images. Image J could measure the color intensities by quantifying of the RGB (red-green-blue) gray levels across the images of colored substances. These values are correlated to the color intensities through conversion to CMY (cyan-magenta-yellow) values which are proportional to the color intensities. The objective of this study is to develop an innovative analytical method for the quantitative determination of uric acid using Image J for color quantification. Image J was utilized to analyze images captured by smart phone for successive concentrations of uric acid that were previously treated with phosphotungstate to develop a blue color. The proposed method has been applied for determination of uric acid in real urine using standard addition method and the results were compared with UV/VIS spectrophotometry as a reference method. In this research, we will also assess the effectiveness of quantitative analysis using Image J in comparison to a mobile application, namely RGB Color Detector.


Assuntos
Colorimetria , Aplicativos Móveis , Colorimetria/métodos , Smartphone , Ácido Úrico , Espectrofotometria
16.
Luminescence ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098178

RESUMO

An innovative, simple, accurate, sensitive, and eco-friendly synchronous fluorescence spectrofluorimetric method has been developed for the simultaneous analysis of montelukast sodium (MON) and fexofenadine hydrochloride (FEX). The method relies on measuring the relative synchronous fluorescence intensity of both drugs using Δλ of 60 nm in methanol at 405 nm for MON and 288 nm for FEX. The experimental parameters influencing the developed method were investigated and optimized. The method was linear over the ranges 0.1-2.0 and 2.0-20.0 µg/ml for MON and FEX, respectively. The limits of detection were 0.018 and 0.441 µg/ml, and the limits of quantitation were 0.055 and 1.336 µg/ml for MON and FEX, respectively. The developed method was applied successfully for the determination of the two drugs in their newly released fixed-dose combination prescribed for the treatment of allergic rhinitis. The mean per cent recoveries were found to be 100.680 ± 0.890 and 100.110 ± 0.940 for MON and FEX, respectively. Furthermore, the method was found to be eco-friendly green as was evaluated according to the Green Analytical Procedure Index tool guidelines and analytical eco-scale.

17.
Brain Commun ; 5(5): fcad222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37794925

RESUMO

LNPK encodes a conserved membrane protein that stabilizes the junctions of the tubular endoplasmic reticulum network playing crucial roles in diverse biological functions. Recently, homozygous variants in LNPK were shown to cause a neurodevelopmental disorder (OMIM#618090) in four patients displaying developmental delay, epilepsy and nonspecific brain malformations including corpus callosum hypoplasia and variable impairment of cerebellum. We sought to delineate the molecular and phenotypic spectrum of LNPK-related disorder. Exome or genome sequencing was carried out in 11 families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals, including review of previously reported patients. We identified 12 distinct homozygous loss-of-function variants in 16 individuals presenting with moderate to profound developmental delay, cognitive impairment, regression, refractory epilepsy and a recognizable neuroimaging pattern consisting of corpus callosum hypoplasia and signal alterations of the forceps minor ('ear-of-the-lynx' sign), variably associated with substantia nigra signal alterations, mild brain atrophy, short midbrain and cerebellar hypoplasia/atrophy. In summary, we define the core phenotype of LNPK-related disorder and expand the list of neurological disorders presenting with the 'ear-of-the-lynx' sign suggesting a possible common underlying mechanism related to endoplasmic reticulum-phagy dysfunction.

18.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37796616

RESUMO

MAD2L1BP-encoded p31comet mediates Trip13-dependent disassembly of Mad2- and Rev7-containing complexes and, through this antagonism, promotes timely spindle assembly checkpoint (SAC) silencing, faithful chromosome segregation, insulin signaling, and homology-directed repair (HDR) of DNA double-strand breaks. We identified a homozygous MAD2L1BP nonsense variant, R253*, in 2 siblings with microcephaly, epileptic encephalopathy, and juvenile granulosa cell tumors of ovary and testis. Patient-derived cells exhibited high-grade mosaic variegated aneuploidy, slowed-down proliferation, and instability of truncated p31comet mRNA and protein. Corresponding recombinant p31comet was defective in Trip13, Mad2, and Rev7 binding and unable to support SAC silencing or HDR. Furthermore, C-terminal truncation abrogated an identified interaction of p31comet with tp53. Another homozygous truncation, R227*, detected in an early-deceased patient with low-level aneuploidy, severe epileptic encephalopathy, and frequent blood glucose elevations, likely corresponds to complete loss of function, as in Mad2l1bp-/- mice. Thus, human mutations of p31comet are linked to aneuploidy and tumor predisposition.


Assuntos
Encefalopatias , Tumor de Células da Granulosa , Neoplasias Ovarianas , Feminino , Humanos , Animais , Camundongos , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Tumor de Células da Granulosa/genética , Mutação , Aneuploidia
19.
J Pharm Biomed Anal ; 236: 115705, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37690186

RESUMO

The purpose of this study is to develop a novel method for synthesizing silver nanoparticles using glucosamine as reducing agent and to utilize the developed method for colorimetric detection and quantitative determination of the non-chromophoric drug, glucosamine. Silver nanoparticles are prepared by reducing 0.02 mol/L silver nitrate by glucosamine in 0.075 mol/L ammonia and stabilizing the nanoparticles with 0.1% polyvinylpyrrolidone and the mixture is heated at 90 °C for 5 min. The prepared silver nanoparticles dispersed in water exhibit a bright yellow color due to a localized surface plasmon resonance band at 412 nm. The principle of glucosamine sensing is based on measuring the intensity of the surface plasmon resonance band at 412 nm which is directly proportional to the concentration of glucosamine with a linearity range (1 - 9 µg/mL), limit of detection 0.33 µg/mL and limit of quantitation 1.0 µg/mL. The proposed method was validated according to the ICH guidelines, and it was found to be accurate, precise, selective, and robust. The method was applied for determination of glucosamine in Joflex® capsules using the standard addition approach with mean % recovery ± standard deviation of 100.077 ± 1.786. The method is simple, rapid, and cost-effective and can be used for determination of glucosamine in bulk and in its pharmaceutical preparations.

20.
Mol Syndromol ; 14(4): 283-292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37766829

RESUMO

Introduction: The underlying molecular defects of congenital hydrocephalus are heterogeneous and many isolated forms of hydrocephalus remain unsolved at the molecular level. Congenital hydrocephalus in males associated with agenesis of the corpus callosum is a notable characteristic of L1CAM gene which is by far the most common genetic etiology of congenital hydrocephalus. Methods and Results: Sequencing of the L1CAM gene on 25 male patients/fetuses who had been presented with hydrocephalus revealed 6 patients and two fetuses with different hemizygous pathogenic variants. Our study identified 4 novel variants and 4 previously reported. The detection rate was 32%, and all the variants were shown to be maternally inherited. Nonsense variants were detected in 3 patients, while missense variants were detected in 2 patients. Frameshift, silent, and splicing variant, each was detected in 1 patient. The clinical manifestations of the patients are in line with those frequently observed including communicating hydrocephalus and agenesis of the corpus callosum. Moreover, rippled ventricles with subdural collection and asymmetry of ventricles after shunt operation were seen in 1 patient and 2 patients, respectively. In addition, abnormal basal ganglia were found in 4 patients which seems to be an additional distinct new finding. We also describe a patient with novel nonsense variant with the rare association of Hirschsprung's disease. This patient displayed additionally multiple porencephalic cysts and encephalomalacia secondary to hemorrhage due to repeated infections after shunt operation. The patients with the missense variants showed long survival, while those with truncating variants showed poor prognosis. Conclusion: This report adds knowledge of novel pathogenic variants to the L1CAM variant database. Furthermore, we evaluated the clinical and imaging data of these patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...